延怡迪,石岩玉,路惠萍,等.ⅢC1r期宫颈癌患者盆腔淋巴结转移预测模型的建立及评价[J].肿瘤学杂志,2026,32(1):54-59.
ⅢC1r期宫颈癌患者盆腔淋巴结转移预测模型的建立及评价
Establishment and Evaluation of A Nomogram for Pelvic Lymph Node Metastasis in Stage ⅢC1r Cervical Cancer Patients
投稿时间:2025-06-18  
DOI:10.11735/j.issn.1671-170X.2026.01.B009
中文关键词:  宫颈肿瘤  淋巴结转移  危险因素  预测模型
英文关键词:cervical neoplasms  lymph node metastasis  risk factors  prediction model
基金项目:
作者单位
延怡迪 郑州大学第三附属医院 
石岩玉 郑州大学第三附属医院 
路惠萍 郑州大学第三附属医院 
周君羿 郑州大学第三附属医院 
摘要点击次数: 0
全文下载次数: 1
中文摘要:
      摘 要: [目的] 基于基线临床数据、血清肿瘤标志物水平和系统性炎症免疫指标构建ⅢC1r期宫颈癌患者盆腔淋巴结转移的预测模型。[方法] 选取郑州大学第三附属医院2018年1月至2024年12月收治的254例术前影像学提示淋巴结转移且最大径<20 mm的ⅢC1r期宫颈癌患者,患者接受了根治性子宫切除术及盆腔淋巴结清扫术,部分患者同时行腹主动脉旁淋巴结清扫术。术后病理显示盆腔淋巴结转移134例(52.76%),无盆腔淋巴结转移120例(47.24%)。研究采用R4.4.3软件将254例研究对象通过随机抽样法按7∶3比例拆分为训练集(n=178)和验证集(n=76)。采用多因素Logistic回归分析影响ⅢC1r期宫颈癌患者盆腔淋巴结转移的独立危险因素,据此构建列线图预测模型,采用受试者工作特征(receiver operating characteristic,ROC)曲线及校准曲线对模型进行验证。[结果] ①多因素 Logistic回归分析发现鳞状细胞癌抗原(squamous cell carcinoma antigen,SCC-Ag)≥3.42 ng/mL(OR=3.517,P=0.004)、系统性免疫炎症指数(systemic immune-inflammation index,SII)≥367.38 (OR=3.695,P=0.004)、肿瘤直径≥32.95 mm(OR=3.151,P=0.009)、淋巴结最大径≥11.25 mm(OR=10.898,P=0.000)是ⅢC1r期宫颈癌患者盆腔淋巴结转移的独立危险因素。②基于以上4项独立危险因素构建了盆腔淋巴结转移风险预测模型。在模型效能验证中,训练集和验证集的ROC曲线下面积分别达0.828(95%CI:0.768~0.883)和0.833(95%CI:0.737~0.919),经验证校准曲线接近理想曲线。[结论] 基于SCC-Ag、SII、肿瘤直径和淋巴结最大径构建的预测模型用于预测ⅢC1r期宫颈癌患者的盆腔淋巴结转移效能较佳,为 ⅢC1r期宫颈癌患者个体化诊疗提供科学的参考依据。
英文摘要:
      Abstract:[Objective] To develop and validate a Nomogram for predicting pelvic lymph node metastasis (PLNM) in patients with stage ⅢC1r cervical cancer based on baseline clinical characteristics, serum tumor markers, and systemic inflammatory-immune indices. [Methods] This study included 254 patients with stage ⅢC1r cervical cancer (preoperative imaging suggesting lymph node metastasis with a maximum diameter <20 mm) from The Third Affiliated Hospital of Zhengzhou University between January 2018 and December 2024. All patients underwent radical hysterectomy and pelvic lymphadenectomy, with some additionally undergoing para-aortic lymphadenectomy. Postoperative pathology confirmed PLNM in 134 cases (52.76%) and no PLNM in 120 cases (47.24%). Patients were randomly divided into a training set (n=178) and a validation set (n=76) in a 7∶3 ratio using R software (version 4.4.3). Multivariate Logistic regression analysis identified independent risk factors for PLNM, which were used to construct a Nomogram. The model’s performance was assessed using receiver operating characteristic (ROC) curves and calibration curves. [Results] Multivariate analysis identified four independent risk factors for PLNM: squamous cell carcinoma antigen (SCC-Ag) ≥3.42 ng/mL (OR=3.517, P=0.004), systemic immune-inflammation index (SII) ≥367.38 (OR=3.695, P=0.004), tumor diameter ≥32.95 mm (OR=3.151, P=0.009), and maximum lymph node diameter ≥11.25 mm (OR=10.898, P=0.000). A Nomogram incorporating these factors was developed. The area under the ROC curve (AUC) was 0.828 (95%CI: 0.768~0.883) for the training set and 0.833 (95%CI: 0.737~0.919) for the validation set. Calibration curves demonstrated good agreement between predicted and observed probabilities. [Conclusion] The Nomogram based on SCC-Ag, SII, tumor diameter, and maximum lymph node diameter showed good predictive performance for PLNM in stage ⅢC1r cervical cancer, and may serve as a valuable tool for guiding individualized treatment strategies.
在线阅读   查看全文  查看/发表评论  下载PDF阅读器