邵志清,沈 丹,徐嫚嫚,等.胰腺神经内分泌瘤影像组学研究进展[J].肿瘤学杂志,2024,30(5):365-370. |
胰腺神经内分泌瘤影像组学研究进展 |
Research Progress on Radiomics in Pancreatic Neuroendocrine Tumor |
投稿时间:2024-03-22 |
DOI:10.11735/j.issn.1671-170X.2024.05.B003 |
|
|
中文关键词: 胰腺神经内分泌瘤 影像组学 深度学习 鉴别诊断 病理分级 |
英文关键词:pancreatic neuroendocrine tumor radiomics deep learning differential diagnosis pathological grading |
基金项目:浙江省医药卫生科技计划项目(2021KY094) |
|
摘要点击次数: 166 |
全文下载次数: 116 |
中文摘要: |
摘 要:胰腺神经内分泌瘤(pancreatic neuroendocrine tumor,pNET)是一类高度异质性的消化系统恶性肿瘤,治疗前肿瘤准确诊断和评估分级对于实施个性化治疗是至关重要的。近年来,影像组学、深度学习等人工智能方法是新兴的非侵入性的图像分析方法,在pNET的诊断和病理分级展现出良好的前景。全文旨在综述影像组学研究在pNET的诊断和病理分级方面的临床应用价值及研究进展,以拓展影像组学在pNET精准诊疗中的新方向和新思路。 |
英文摘要: |
Abstract: Pancreatic neuroendocrine tumor(pNET) is a kind of highly heterogeneous malignant tumor of the digestive system, and accurate diagnosis and grading are crucial for personalized treatment. In recent years, artificial intelligence methods such as radiomics and deep learning have become emerging non-invasive image analytical modalities, showing promising prospects in the diagnosis and pathological grading of pNET. This paper reviews the research progress on clinical application of radiomics in the diagnosis and pathological grading of pNET, to provide a new direction and insights of radiomics in the precise diagnosis and treatment of pNET. |
在线阅读
查看全文 查看/发表评论 下载PDF阅读器 |