严鹏伟,朱焕锋,刘雅恬.基于3D-CT和4D-CT的肺癌放射治疗靶区勾画方法的研究[J].肿瘤学杂志,2020,26(7):591-595.
基于3D-CT和4D-CT的肺癌放射治疗靶区勾画方法的研究
Study of Internal Tumor Volume for Radiation Treatment of Non-small Cell Lung Cancer on 3D-CT and 4D-CT
投稿时间:2019-09-30  
DOI:10.11735/j.issn.1671-170X.2020.07.B005
中文关键词:  3D-CT  4D-CT  内靶区  放疗  肺癌
英文关键词:three-dimensional computed tomography  four-dimensional computed tomography  internal target volume  volume comparison  lung cancer
基金项目:
作者单位
严鹏伟 江苏省肿瘤医院江苏省肿瘤防治研究所南京医科大学附属肿瘤医院 
朱焕锋 江苏省肿瘤医院江苏省肿瘤防治研究所南京医科大学附属肿瘤医院 
刘雅恬 江苏省肿瘤医院江苏省肿瘤防治研究所南京医科大学附属肿瘤医院 
摘要点击次数: 913
全文下载次数: 201
中文摘要:
      摘 要:[目的] 以3D-CT和4D-CT模拟定位,比较非小细胞肺癌放疗靶区的不同勾画方法。[方法] 患者处于平静呼吸状态,依次做3D-CT扫描、4D-CT扫描,然后根据采集到的图像,按下列不同方式勾画出内靶区(ITV):①将4D-CT构建的10个呼吸相中的肿瘤靶区(GTV)全部勾画,然后融合至全10相形成ITV10相;②以4D-CT的0%和50%相作为2个极限呼吸相,分别勾画GTV再融合至0~50相,形成ITV2相;③构建4D-CT的最高密度投影(MIP)图像,直接在MIP图像勾画ITVMIP;④在4D-CT图像上,测量头-脚、腹-背和左-右方向GTV的位移,计算95%位移值,用于3D-CT的GTV的外放依据,形成ITV3DCT。上述4种ITV,再在三维方向扩大5mm的处理,得到与之相对应的计划靶区(PTV)。从几何容积和形状匹配度两方面对上述4种ITV和PTV进行对比。[结果] 在头-脚、腹-背、左-右方向上,GTV的位移值分别为(3.2±4.1)mm、(2.1±3.0)mm、(0.7±0.7)mm。两两比对提示,肿瘤的位移更多体现在头-脚和腹-背方向(P值均<0.0001)。基于此数据,以GTV3DCT的头-脚、腹-背、左-右三个方向进行外放5mm、3mm、1mm生成ITV3DCT。ITV10相、ITV2相、ITVMIP、ITV3DCT中位容积分别为12.98cm3、11.55cm3、12.95cm3、16.54cm3,PTV10相、PTV2相、PTVMIP、PTV3DCT中位容积分别为31.22cm3、28.64cm3、31.18cm3、37.51cm3。与ITV10相和PTV10相比较,ITV2相、ITVMIP、ITV3DCT和PTV2相、PTVMIP和PTV3DCT的MI均值分别为0.83、0.95、0.7和0.88、0.94和0.74。[结论] ITVMIP和PTVMIP与ITV10相和PTV10相的差距最小,合适病例可用MIP勾画靶区以保证精准、提高效率。由于容积差异较大、匹配度较低,不建议用ITV2相或ITV3DCT直接替代ITV10相设计计划。
英文摘要:
      Abstract:[Objective] To analyze the difference between internal tumor volumes(ITVs) based on three-dimensional computed tomography(3D-CT) and four-dimensional(4D-CT) images in radiotherapy for non-small cell lung cancer(NSCLC). [Methods] Eligible patients diagnosed as NSCLC received both 3D-CT and 4D-CT scans before radiotherapy. There were four different ITV delineation methods as:(1) Fusing all of 10 tumor target volumes(GTVs) form 10 respiratory phases created by 4D-CT and forming ITV10phases;(2) Defining 0% and 50% phases from 4D-CT image as two extreme phases,and combining GTVs from these two phases as ITV2phases;(3) Contouring GTV on maximum intensity projection(MIP) created after 4D-CT directly and forming ITVMIP;(4) Calculating 95% of GTV centroid displacement values in each direction measured by 4D-CT and then enlarging GTV from 3D-CT to form ITV3DCT. An isotropic margin of 5mm from each ITVs were generated to from plan target volumes(PTVs),respectively. The volume and matching index(MI) was analyzed to study the difference between ITVs and PTVs,and MI was defined as the ratio of ITV10phases and PTV10phases. [Results] In the superior-inferior(S-I),anterior-posterior(A-P) and left-right(L-R) directions,the motion of GTV centroid was(3.2±4.1)mm,(2.1±3.0)mm and(0.7±0.7)mm,respectively. A-P and S-I directions showed greater displacement of GTV centroid compared with L-R direction(P<0.01). According to the displacement values on each direction,ITV3DCT were created by adding certain margins 1,3 and 5 mm in L-R,A-P and S-I directions to GTV based on 3D-CT,respectively. The median volumes of ITV10Phases and PTV10Phases were 12.98cm3 and 31.22cm3;the median volumes of ITV2Phases and PTV2Phases were 11.55cm3 and 28.64cm3;the median volumes of ITVMIP and PTVMIP were 12.95cm3 and 31.18cm3;the median volumes of ITV3DCT and PTV3DCT were 16.54cm3 and 37.51cm3. In comparisons with ITV10Phases and PTV10Phases,the MI values of ITV2Phases,ITVMIP,ITV3DCT,PTV2Phases,PTVMIP and PTV3DCT were 0.83,0.95,0.78,0.88,0.94 and 0.74,respectively. [Conclusion] A method of contouring ITV on MIP image based on 4D-CT might have a potential to be optimal ITV10Phases for NSCLC. However,neither ITV2 phases nor ITV3DCT showed appropriateness in replacing ITV10phases directly,according to greater difference between volume and form in comparison with ITV10phases.
在线阅读   查看全文  查看/发表评论  下载PDF阅读器