基于Lasso-Cox回归的高级别胶质瘤患者生存预测模型的构建
Development of a Survival Prediction Model for Patients with High-Grade Glioma Utilizing Lasso-Cox Regression Analysis
投稿时间:2024-12-23  修订日期:2025-02-14
DOI:
中文关键词:  高级别胶质瘤  放射治疗  总生存期  Lasso-Cox回归  列线图
英文关键词:High grade glioma  Radiotherapy  Overall survival  Lasso-Cox regression  Nomogram
基金项目:国家自然科学基金(82172804);吴阶平医学基金会临床科研专项资助基金(320.6750.2021-10-52);南京医科大学“专病队列”研究项目(NMUC2020033)
作者单位邮编
王鑫 南京医科大学 210009
彭凡禹 江苏省肿瘤医院 
宗丹 江苏省肿瘤医院 
钱普东 江苏省肿瘤医院 
何侠* 江苏省肿瘤医院 210009
摘要点击次数: 0
全文下载次数: 0
中文摘要:
      [目的] 构建并验证基于Lasso-Cox回归的高级别胶质瘤患者生存预测模型。[方法] 回顾性收集2016年1月至2023年12月在江苏省肿瘤医院接受术后调强放疗联合化疗等综合治疗的309例高级别胶质瘤患者临床资料。按7:3比例随机分为训练集(n=216)和验证集(n=93),在训练集中,采用最小绝对收缩和选择算子(least absolute shrinkage and selection operator, LASSO)筛选总生存期(overall survival,OS)的影响因素,将其纳入多因素Cox比例风险回归分析,构建列线图模型,分别采用一致性指数(C指数)、校准曲线和临床决策曲线(DCA)评价预测模型的区分度、校准度和临床效用性,Kaplan-Meier生存曲线评价列线图模型对患者的危险分层能力。[结果] 组织学分级、MGMT启动子区状态、手术与放疗间隔时间、放疗前单核细胞水平、放疗前血小板与淋巴细胞比值是高级别胶质瘤患者总生存期的独立影响因素。构建的列线图模型在训练集和验证集的C指数分别为0.705(95%CI:0.658~0.752)和0.661(95%CI:0.583~0.739),校准曲线拟合度良好,DCA曲线显示模型临床效用较高。列线图模型对不同危险分层的患者有显著的分辨能力(P<0.001)。[结论] 本研究构建的基于Lasso-Cox回归的列线图模型可有效预测HGG患者术后调强放疗联合化疗等综合治疗后的总生存期。
英文摘要:
      [Objective] To develop and validate a survival prediction model for high-grade gliomas using Lasso-Cox regression. [Methods] The clinical data of 309 patients with high-grade glioma who underwent postoperative intensity-modulated radiotherapy combined with chemotherapy and other comprehensive treatments at Jiangsu Cancer Hospital from January 2016 to December 2023 were retrospectively collected. They were randomly divided into a training set (n = 216) and a validation set (n = 93) at a ratio of 7:3. In the training set, the least absolute shrinkage and selection operator (LASSO) was employed to screen the influencing factors of overall survival (OS), which were subsequently incorporated into the multivariate Cox proportional hazards regression analysis to construct a nomogram model. The discrimination, calibration, and clinical utility of the prediction model were evaluated using the concordance index (C-index), calibration curve, and clinical decision curve (DCA), respectively. The Kaplan-Meier survival curve was utilized to assess the risk stratification ability of the nomogram model for patients.[Results] Histologic grade, MGMT promoter status, intervals between surgery and radiotherapy, monocyte level before radiotherapy, and platelet to lymphocyte ratio before radiotherapy are independent influencing factors for the overall survival of patients with high-grade glioma. The C-index of the nomogram model in the training set and validation set are 0.705 (95%CI: 0.658-0.752) and 0.661 (95%CI: 0.583-0.739), respectively. The calibration curve is well fitted, and the clinical decision curve shows that the model has high clinical utility. The nomogram model has significant discrimination power for patients with different risk stratification (P<0.001).[Conclusions] The nomogram model can effectively predict overall survival in high-grade glioma patients following postoperative intensity-modulated radiotherapy combined with chemotherapy.
在线阅读     查看/发表评论  下载PDF阅读器