胆囊癌中 B7-H1 和 B7-H4 的表达及临床意义

展鹏远,王晓磊,郭 伟,金家岩,段文飞,皇甫深强 (河南大学第一附属医院,河南 开封 475001)

摘 要:[目的] 探讨胆囊癌中 B7-H1 和 B7-H4 的表达及其临床意义。[方法] 应用免疫组织 化学 SP 法检测 60 例胆囊癌组织中 B7-H1、B7-H4 的表达,分析两者与胆囊癌临床病理特征 的关系。[结果] B7-H1 和 B7-H4 在胆囊癌中的阳性表达率显著高于癌旁组织 (46.7% vs 5.0%,55.0% vs 0)(P均<0.05)。B7-H1、B7-H4 在 Nevin(\mathbb{IV} + \mathbb{V})期、淋巴结转移组中的阳性表达率显著高于 Nevin(\mathbb{I} + \mathbb{II} + \mathbb{II})期、无淋巴结转移组(P<0.05)。B7-H1、B7-H4 与性别、年龄、合并胆囊结石、肿瘤组织学类型及分化程度无相关性(P>0.05)。B7-H1、B7-H4 在胆囊癌中表达呈正相关(P=0.30,P<0.05)。[结论] B7-H1 和 B7-H4 可能在胆囊癌的发生发展中起一定的作用。

主题词:胆囊肿瘤;B7-H1;B7-H4;免疫组织化学

中图分类号:R735.8 文献标识码:A 文章编号:1671-170X(2017)02-0130-04 doi:10.11735/j.issn.1671-170X.2017.02.B011

Expression of B7-H1 and B7-H4 in Gallbladder Cancer and Their Significance

ZHAN Peng-yuan, WANG Xiao-lei, GUO Wei, et al. (The First Affiliated Hospital of Henan University, Kaifeng 475001, China)

Abstract: [Objective] To explore the significance of B7-H1 and B7-H4 expression in gallbladder cancer. [Methods] The expressions of B7-H1 and B7-H4 were detected by immunohistochemistry (SP) method in 60 specimens of gallbladder cancer tissues and 20 specimens of tumor-adjacent tissues, and their correlation with the clinicopathologic characteristics of gallbladder cancer were analyzed. [Results] The expressions of B7-H1 and B7-H4 were significant higher in gallbladder cancer tissue than those in tumor-adjacent tissue (46.7% vs 5.0%, 55.0% vs 0.0%; P<0.05). The expressions of B7-H1 and B7-H4 in gallbladder cancer were positively correlated with each other. The expressions of B7-H1 and B7-H4 were significantly higher in Nevin stage (IV+V) group and lymph node metastasis group than those in Nevin stage(IV+II+III) group and lymph node metastasis-free group, respectively (IV=0.05), but they had no correlations with age, sex, complicated cholelithiasis, histological types or tumor differentiation(IV=0.05). [Conclusion] B7-H1 and B7-H4 may play a role in the occurrence and development of gallbladder cancer. It might provide new means of immunotherapy and gene therapy for gallbladder cancer.

Subject words: gallbladder neoplasms; B7-H1; B7-H4; immunohistochemistry

胆囊癌的发病率在整个消化道恶性肿瘤中居第5位,但在胆道系统恶性肿瘤中其发病率最高。胆囊癌早期诊断较为困难,恶性程度高,预后很差^[1],临床上应给予足够的重视。研究发现,B7分子不同成员与相应受体结合介导免疫调控信号,参与T细胞介导的肿瘤免疫^[2]。另一方面,一些负性共刺激分子

也通过非免疫调控作用直接参与肿瘤的形成。本研究应用免疫化学方法检测胆囊癌中负性共刺激分子B7-H1、B7-H4的表达水平,探讨两者与胆囊癌临床病理特征的关系及意义。

1 资料与方法

1.1 临床资料

收集我院 2004 年 6 月至 2011 年 1 月手术切除 的胆囊癌石蜡包埋组织 60 例,合并胆囊结石者 50

基金项目:开封市科技发展计划项目(130351)

通讯作者:展鹏远,副主任医师,硕士;河南大学第一附属医院普外科,河南省开封市西门大街 357 号(475001);E-mail:hdyfywxl@126.com

收稿日期:2016-06-12;修回日期:2016-08-26

例;患者年龄 36~70 岁,平均年龄 58 岁;其中男性 15 例,女性 45 例;腺癌 56 例,腺鳞癌 4 例;高、中分化 42 例,低分化 18 例;伴淋巴结转移者 26 例;术前均未行放化疗,取癌旁组织 20 例作为对照组。

1.2 主要试剂

鼠抗人 B7-H1、B7-H4 单克隆抗体,购自美国 R&D 公司;超敏 SP 试剂盒:生物素标记的羊抗鼠 IgG、链霉菌抗生物素蛋白-过氧化酶购自福州迈新生物技术开发有限公司。

1.3 检测方法

采用免疫组织化学 SP 法检测 B7-H1 和 B7-H4 的表达,操作步骤按说明书进行,以结肠癌作为阳性对照,以磷酸盐缓冲盐水代替一抗作阴性空白对照。

1.4 染色结果判断

免疫组织化学染色为细胞膜和(或)细胞质出现淡黄色及棕黄色颗粒,在400倍显微镜下,随机观察5个不连续视野,计算阳性细胞百分比(PP):<10%计1分,10%~50%计2分,>50%计3分。染色强度计分(SI):无染色计0分,弱染色计1分,中等染色计2分,强染色计3分。以免疫反应得分(IRS=SI×PP)判

定染色结果^[3],5个视野的IRS平均值为表达水平,IRS>1为阳性表达。

1.5 统计学处理

应用 SPSS17.0 软件进行统计学分析,计数资料采用 χ^2 检验、连续性校正 χ^2 检验、确切概率法、Pearson 相关分析等。以 P<0.05 为差异有统计学意义。

2 结 果

2.1 B7-H1 和 B7-H4 在 胆囊癌和癌旁组织中的表达

B7-H1 和 B7-H4 主要表达于胞质、胞膜(Figure 1~2)。B7-H1 在胆囊癌组织中的阳性表达率为 46.7%(28/60),高于癌旁组织的 5.0%(1/20);B7-H4 在胆囊癌组中

的阳性表达率为 55.0%(33/60),癌旁组织中无表达, 差异均有统计学意义(P<0.05)。

2.2 B7-H1 和 B7-H4 表达与胆囊癌临床病理特征的 关系

胆囊癌组织中,B7-H1和B7-H4的表达在患者性别、年龄、是否合并胆囊结石、组织学类型、分化程度等组间的差异均无统计学意义(P>0.05),在Nevin ($\mathbb{I} + \mathbb{I} + \mathbb{I} \mathbb{I}$)期、无淋巴结转移组中的表达分别高于Nevin ($\mathbb{I} + \mathbb{I} \mathbb{I} + \mathbb{I} \mathbb{I}$)期、无淋巴结转移组,差异有统计学意义(P<0.05)(Table 1)。B7-H1阳性表达的28例患者, \mathbb{I} RS \leq 3患者22例, \mathbb{I} RS \leq 3患者6例;B7-H4阳性表达的33例患者中, \mathbb{I} RS \leq 3患者26例, \mathbb{I} RS \leq 3患者7例;结果显示, \mathbb{I} RS \leq 3组与 \otimes 3组在不同Nevin分期、淋巴结转移患者中差异无统计学意义(Table 2)。

2.3 B7-H1、B7-H4 在胆囊癌中的表达相关性

相关性分析显示,胆囊癌中 B7-H1 和 B7-H4 的表达呈正相关(r=0.30,P<0.05)(Table 3)。

3 讨 论

B7 家族是一类分子量为 50~70kD 的跨膜糖蛋

Negative expression(×100)

Figure 1 The expression of B7-H1 in gallbladder cancer

Negative expression

Positive expression

Positive expression

Figure 2 The expression of B7-H4 in gallbladder(×400)

131

Table 1 Relationship among the expressions of B7-H1, B7-H4 and clinicopathologic characteristics in gallbladder cancer

Clinicopathologic characteristics	N	В7-Н1		χ^2	Р -	В7-Н4		χ^2	P
	IN ·	+	-	Χ	Ρ -	+	-	Χ	P
Nevin stages									
I + II + III	32	11	21	4.16	0.041	11	21	5.73	0.017
IV + V	28	17	11			22	6		
Differentiation degree									
Poor	18	10	8	0.82	0.366	12	6	1.41	0.234
Well, moderate	42	18	24			21	21		
Gender									
Male	15	8	7	0.36	0.550	8	7	0.02	0.734
Female	45	20	25			25	20		
Age(years)									
≤50	35	18	17	0.77	0.382	20	15	0.16	0.693
>50	25	10	15	0.77		13	12		
Lymph node metastasis									
Yes	26	19	7	12.86	0.001	20	6		
No	34	9	25			13	21	8.91	0.003
Complicated with gallstone									
Yes	50	24	26	0.01*	0.872	28	22	0.12	0.728
No	10	4	6		0.872	5	5		
Histological types									
Adenocarcinoma	56	26	30	0.02*	0.889	31	25	0.04*	0.835
Adenosquamous cancer	4	2	2	0.02	0.009	2	2	0.04	0.655

Note: *Continuity correction chi-square test.

Table 2 Relationship between the different degree expressions of B7-H1, B7-H4 and clinicopathology indicators in gallbladder cancer

			,	•			
Index	В7-Н1		P#	В7-Н4		P#	
index	IRS≤3	IRS>3	Γ	IRS≤3	IRS>3	Γ	
Nevin stages							
I + II + III	9	2	0.653	8	3	0.661	
IV + V	13	4		18	4		
Lymph node metastasis							
Yes	15	4	1.000	15	5	0.676	
No	7	2		11	2	0.676	

Note: "Fisher definite probability methods.

白,结构相似,可作为共刺激因子在机体免疫过程中起作用,其中B7-H1和B7-H4被认为是肿瘤免疫抑制性分子。

本研究显示,B7-H1 在胆囊癌中的表达高于癌旁组织,差异具有显著性。随着 Nevin 分期的进展,表达也呈上升趋势。并且在有淋巴结转移组中的表达高于无淋巴结转移组,差异具有显著性;但与患者的性别、年龄、是否合并胆囊结石及分化程度等因素无关。提示 B7-H1 可能在胆囊癌的发生发展中起一定的作用。肿瘤微环境在肿瘤的发生发展中起重要作用,其中浸润有大量肿瘤抗原特异的 T 淋巴细胞,可

Table 3 Correlation between B7-H1 and B7-H4 in gallbladder cancer

В7-Н1	В7-	-H4	22	χ^2	P
	+	-	1		
+	20	8	0.30	5 72	< 0.05
-	13	19	0.30	5.75	<0.03

对体内的肿瘤细胞起清除作用,在肿瘤免疫监视过程中起作用。B7-H1又称程序性死亡配体,B7-H1与其配体PD-1的结合对T细胞的增殖起抑制作用,还可抑制细

胞毒性 T 细胞的杀伤活性。此外, B7-H1 还可通过促进 Treg 的分化在抑制肿瘤浸润 T 淋巴细胞的增殖活化过程中起作用, 进而抑制机体对肿瘤的免疫应答; B7-H1 还可以通过抑制 T 细胞增殖在肿瘤免疫逃避^[4,5]。在胃癌中的研究发现^[6], B7-H1 在胃癌患者中高表达, 有淋巴结转移的胃癌患者 B7-H1 表达水平较无淋巴结转移者高。认为 B7-H1 与胃癌细胞的淋巴结转移密切相关,但其分子机制仍有待后续进一步研究。在结直肠癌中的研究显示^[7], B7-H1的表达与结直肠癌的分期有关, B7-H1高表达者生存期短, 提示 B7-H1高表达者预后不良。

本研究发现,B7-H4 在胆囊癌中的表达显著高于癌旁组织,随着 Nevin 分期的进展,B7-H4 表达水平上升,且在淋巴结转移组中高表达,提示 B7-H4 可能在胆囊癌的发生发展中起作用。在乳腺癌和卵巢癌中的研究显示[8],B7-H4 的异常高表达在上皮细胞恶性转变及肿瘤的发生过程中起作用。B7-H4 还可通过抑制细胞因子分泌(如 IL-2、IL-10 等),使细胞周期停滞于 G₀/G₁期,抑制 CD8+增殖与成熟。通过抑制活化 T细胞中的细胞外信号调节蛋白激酶、c-Jun N 端激酶、丝裂原激活蛋白激酶 P38 和 AKT信号通路,以影响 T细胞的增殖^[9,10]。此外,研究表明,在体外实验中通过一种抗 B7-H4 试剂能逆转 B7-H4 蛋白对 CD3 激活的 T细胞的免疫抑制作用,并能显著增强肿瘤抗原特异性 T细胞活性,证实 B7-H4 在肿瘤进展中的作用[11]。

本实验显示,在阳性表达的胆囊癌中,IRS≤3 组与 IRS>3 组在不同 Nevin 分期及淋巴结转移患者中差异无统计学意义,由于本研究选择的病例有限,不能进行进一步的分层分析,可能对实验结果造成影响,有待于进一步扩大样本量进行分析。相关性分析显示,胆囊癌中 B7-H1 和 B7-H4 的表达呈正相关,两者均是肿瘤免疫抑制性分子,与肿瘤有一定的关系,目前尚未见两者相互作用的研究报道,有待于进一步研究,但联合检测两者在胆囊癌中的表达有助于判断胆囊癌的预后。国内亦有在胃癌中的研究报道□□,当 CD11c 高表达、B7-H4 低表达时,行 CIK联合化疗可使患者无病生存期和生存时间显著延长,从而获得最佳治疗效果;认为 B7-H4 有望成为肿瘤治疗的新靶点。

参考文献:

- [1] Yang CM. Practical operation of general surgery [M]. First edition. Beijing:People's Health Publishing House, 2014. 723.[杨春明.实用普通外科手术学[M].第 1 版.北京:人民卫生出版社, 2014. 723.]
- [2] Seliger B, Quandt D.The expression, function, and clinical relevance of B7 family members in cancer [J]. Cancer Immunol Immunother, 2012, 61(8):1327–1341.

- [3] Gao C, Zhu YQ, Liu Y, et al. Expression and clinical significance of special AT-rich sequen ce-binding protein in colorectal carcinoma[J]. Cancer Research on Prevention and Treatment, 2013, 40 (2):159–163.[高超,朱艳卿,刘颖,等. SATB1 基因在结直肠癌中的表达及其临床意义[J]. 肿瘤防治研究, 2013, 40(2):159–163.]
- [4] Dong H, Jing S, Yong M, et al. B7-H1 expression is associated with expansion of regulatory T cells in colorectal cancer [J]. World J Gastroenterol, 2012, 18(9):971–978.
- [5] Chen K, Huang HT, Hang WJ, et al. Effects of lung cancer cell-associated B7-H1 on T-cell proliferation in vitro and in vivo[J]. Braz J Med Biol Res, 2016, 49(7):e5263.
- [6] Wu SY, Yu Z, Hou JY, et al. Expression of B7-H1, B7-H3 and B7-H4 in gastric carcinoma tissues and their correlation with clinical features [J]. Chinese Journal of Experimental Surgery, 2014, 31(12): 2852–2854. [吴淑云,于钟,侯婧瑛,等. B7-H1、B7-H3、B7-H4在胃癌中的表达及其临床意义[J].中华实验外科杂志, 2014, 31(12): 2852–2854.]
- [7] Xiao-Feng Li, Xian-Feng Liu, Yong-Yan Yang, et al. Correlation study of Bcl-2, B7-H1, EGFR, VEGF and colorectal cancer[J]. Am J Cancer Res, 2015, 5(7): 2277–2284.
- [8] Salceda S,Tang T,Kmet M,et a1.The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation[J].Exp Cell Res, 2005, 306 (1):128-141.
- [9] Zang X, Loke P, Kim J, et al. B7x; a widely expressed B7 family member that inhibits T cell activation[J]. Proc Natl Acad Sci U S A, 2003, 100(18); 10388-10392.
- [10] Wang X, Hao J, Metzger DL, et al. B7-H4 treatment of T cells inhibits ERK, JNK, p38 and AKT activation[J]. PLoS One, 2012, 7(1):e28232.
- [11] Dangaj D, Lanitis E, Zhao A. et al. Novel recombinant human B7-H4 antibodies overcome tumoral immune escape to potentiate T cell anti-tumor responses [J]. Cancer Res, 2013, 73(15):4820–4829.
- [12] Yang J, Chen JP, Xu B, et al. Effects of coexpression of B7-H4 and CDllc on prognosis of patients with gastric cancer trea ted by cytokine -induced killer cells[J]. Chinese Journal of Experimental Surgery, 2015, 32(3):460-462. [杨景,陈建平,徐斌,等.协同刺激分子 B7-H4 与 CD11C 共表达对细胞因子诱导的杀伤细胞治疗胃癌患者预后的影响[J].中华实验外科杂志, 2015, 32(3):460-462.]